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Path integrals for potential problems with &function 
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Received 22 February 1990 

Abstract. In this paper I present several examples of potential problems with a 8-function 
perturbation by means of path integrals. The idea is to sum a perturbation series expansion 
resulting in an energy-dependent Green function G ( E ) .  The energy levels E,, of the 
perturbed problem are determined by the equation (one-dimensional case) 
iG'"'(a, a ;  E , )  = f i /  y, where G'"'  is the Green function of the unperturbed problem, y is 
the strength of the 8 potential and a it's location in Iw. In D-dimensional radial problems 
with a spherically shaped S function located at r = a  this equation changes into 
i G ( V j  , (a ,  a ;  E,) = h/aD- '  y, where I denotes the angular momentum number.. 

1. Introduction 

In recent years there has been an enormous achievement in solving Feynman path 
integrals exactly. Besides the harmonic oscillator, whose solution is originally due to 
Feynman himself [ l ]  (or, the general quadratic Lagrangian, e.g. [2]), the radial 
harmonic oscillator [3] and problems related to homogeneous spaces (rotator [4], 
pseudosphere [5] and (modified) Poschl-Teller potential [ 6 , 7 ] ) ,  a large number of 
problems could be treated by the celebrated spacetime transformation technique 
introduced by Duru and Kleinert [8] in their treatment of the hydrogen atom. From 
these basic solutions a path integral problem is exactly solvable if the corresponding 
Schrodinger equation is equivalent to the differential equation for the confluent hyper- 
geometric function or the hypergeometric function. 

However, there are some potential and boundary problems which do not fall into 
these two classes. One such problem is the &function potential and potential problems 
with a &function perturbation. As it turns out, most of these problems are not even 
solvable in the sense that wavefunctions and energy levels can be explicitly stated. But 
it is possible to derive an exact (and in general) transcendental equation which 
determines wavefunctions and energy levels in a unique way. 

This kind of problem turns out to be useful in the study of collision theory, where 
ionization is also considered, e.g. [9-121. 

In this paper I want to present how these transcendental equations can be derived 
by means of path integral technique and perturbation series summation. The scope is 
thus to give a systematic and consistent approach to this kind of problem in the 
framework of path integrals. 

The paper is organized as follows. In section 2, I present the general method. The 
main step in the path integral calculation involves an expansion in a perturbation 

0305-4470/90/225205 + 30%03.50 0 1990 IOP Publishing Ltd 5205 



5206 C Grosche 

series which turns out to be exactly summable. Because I am dealing with arbitrary 
potentials with a 6-function perturbation this is clearly a generalization of [ 13, 141, 
where only the simplest case ( 6  function in R) was treated. 

In section 3 several applications are discussed which include: 
(i) One-dimensional examples: (a)  free particle; (b) free particle on the half-line; 

(c) infinite square well; (d)  harmonic oscillator; (e) harmonic oscillator on the half-line; 
(f)  Morse potential and Liouville quantum mechanics; (g) reflectionless potential; (h) 
reflectionless potential on the half-line; ( i )  inverse-distance potential; ( j )  Poschl-Teller 
potential; (k)  modified Poschl-Teller potential; (1) free particle with 6 function; 

(ii) D-dimensional radial examples: (a)  free particle; (b)  two-dimensional particle 
confined in a sector; (c) radial harmonic oscillator; (d )  inverse distance ('Coulomb') 
potential. 

In all the examples the (energy-dependent) Green function of the unperturbed 
problem is explicitly known and can be calculated by the path integral technique. 
Section 4 contains some concluding remarks and in the appendix the Feynman kernel 
for the perturbed reflectionless potential is explicitly calculated. 

2. Summation of the perturbation expansion 

2.1. One-dimensional problems 

We consider an arbitrary potential V ( x )  in one dimension with an additional &function 
perturbation such that 

W ( x )  = V ( x )  - y S ( x  - a ) .  (1) 

The path integral for this potential problem has the form 

K ( x " ,  x ' ;  T )  = 1 D x ( t )  exp[ -: 1: ("X2+ 2 W ( x )  

where xi ' )  = x ( j ~ ) ,  E = T /  N, Ax"' = x"' - x( ' - l l  in the limit N + 00 and we have chosen 
'imaginary' time. Let us assume that the path integral (Feynman kernel, respectively) 
for the potential V is known, i.e. 

K ' " ' ( X ' ' ,  x ' ;  T )  = D x ( t )  exp [ -- 1: (: X 2 +  V l x ) )  d i ]  

including, of course, the (energy-dependent) Green function 

exp(-sT/h)K'"'(x", x'; T )  dT 

G' "'(x", x ' ;  s)  exp( S T /  h )  ds. 

(3 )  

(4) 
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Expanding ( 2 )  into a perturbation expansion according to [ 13,141 yields 

x K'" ' (a ,  x'; t " ' )  . , . K ' " ' ( a ,  a ;  t l n ' -  t(~-"K'")(x' ' ,  a ;  7- t ' " ' ) .  
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( 5 )  

In the second step I have ordered the time as t " ' <  t ( * ' < .  . . < 7 and paid attention to 
the fact that K (  t"' - t i ' - " )  is different from zero only if t"'> t"-". Introducing the 
Green function G(s) of the perturbed system similarly to (4), I obtain, due to the 
convolution theorem of Laplace transformation, 

X 

G(x", x'; s ) =  GiV'(x",  x'; s)+ 1 ( X ) f l G i " ( ~ " ,  a ;  s)G'" ' (a ,  x'; s)[G'"'(a, a ;  s)]"-' 
n = l  

y G'"'(x", a ;  s)G'" ' (a ,  x'; s )  
h l - ( y / h ) G ' " ' ( a , a ; s )  

= G'  "'( x", x'; S )  + - 
where it is assumed that G'"'(a, a ;  s) actually exists and the summation makes sense. 
The energy levels s, of the perturbed problem W(x) are therefore determined in a 
unique way by the equation 

(7) 
The same result can be achieved by solving the Schrodinger equation for the perturbed 
problem 

G'"'(a, a ;  s,) = h/y.  

W(x)+ V ( x ) W ( x ) - E q ( x ) =  yS(x-a)*(x).  
h2  d2  

2 m  dx2  

Translating (6) into 'real' time (perform the replacement: iT = T and 6 = -iv%') yields 

y G'"'(x", a ;  E)G(" ' ( a ,  x';  E )  
h 1 -i(Y/h)G'" '(a,  a ;  E )  G(x",x' ;  E ) = G ' " ' ( x " , x ' ;  E ) + i -  (8) 

and the energy levels E, are determined by 

h / y = i G ' " ' ( a ,  a ;  E,,). (9) 

G(x", x'; E )  = exp( iET/h )K(x" ,  x'; T )  dT. (10) 

Here G ( E )  denotes the Green function defined by 

loX 
Denoting by E',"' and W',"' the energy levels and wavefunctions of the unperturbed 
problem, i.e. 

*',"'*( X')V',"'( x") 
E'"1-E G '  "'(x", x'; E )  = 1 

n 

we find for the Green function of the perturbed problem 

Res G(x",x ' ;  E)IE=Ej , t l=O.  (12)  
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Our result is in accordance with the operator approach of Bychkov [15] and  Gaveau 
and  Schulman [16]. Whereas in [15] a specific problem was discussed (periodic lattice 
of 6 potentials), Gaveau and  Schulman obtained for a potential like in (1) for the 
(time-dependent) Feynman kernel the implicit equation 

K ( x ” , x ’ ;  T)=KiV)(x” ,x ’ ;  T ) + i -  KiV ’ (x” ,  a ;  t ) K ( a , x ’ ;  T - t ) d t .  n loT 
Fourier transformation yields 

(14) 
Y 
h 

G(x”, x’; E )  = G‘”’(x”, x’;  E ) + i  - G ‘ ” ’ ( x “ ,  a ;  E ) G ( a ,  x’; E )  

and (6), (8) are recovered. 

for the corresponding wavefunction 
Taking in (6) the residuum at s = s, (= energy of the ith bound state) we obtain 

1 2  s - s, ) G(x, a ;  s,). 
5 - 5 ,  ( h / y ) - G ’ ” ’ ( a ,  U ;  S )  

2.2. D-dimensional radial problems 

I consider in D dimensions a radial potential according to 

W ( r ) =  V ( r ) - y S ( r - a )  

i.e. a spherically shaped 8-function perturbation of the potential V (  r ) .  We must require 
a # 0 because point perturbation leads to the evaluation of Green functions, where 
both arguments are equal (and zero), an  expression which in general does not exist 
(even for non-zero arguments). Of course, I am using the usual D-dimensional polar 
coordinates [ 17, chapter XI]: 

x1 = r cos 8 ,  

x2 = r sin O1 cos O2 

x3 = r sin O1 sin O2 cos O3 

x D - ]  = r sin 0, sin e ? . .  . sin OD-? cos 4 

x,, = r sin 8,  sin Or . . . sin O D - *  sin & 

where O < O , , s r  ( v = l ,  . . . ,  D - 2 ) ,  0 G 4 s 2 7 r ,  r 3 0 .  For a radial problem we can 
separate variables in the path integral: 
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where SY(0) denote the real hyper-spherical harmonics of degree 1 with unit vector 
fl and 1 E No,  p = 1, .  . . , M, M = (21 + D -2 ) (1+  D - 3 ) ! / l ! ( D  -2)! and the radial path 
integral K , ( T )  is given by [3 ,4,  181 

with the functional measure 
p ,  (D1 [ r  2 3 = lim p : D 1 [ r ( J - l l r ‘ / l ]  

N - X  

(20) 

Proceeding in a similar way to the previous section and expanding the perturbed 
problem into a perturbation series yields 

x dR‘” dt‘” 

with the radial perturbation expansion 

x Kjvi(a, r ’ ;  t i ” )  . . . ~ j ~ ’ ( a ,  a ;  r ( ’ ) -  t ( n - l ’ ) K ~ ” ) ( r ’ t ,  a ;  7- t ‘ ” ’ ) .  ( 22 )  
Introducing the Green function G(s) similar to (4), I obtain 

X 

G(x”, x‘; s )  = Gl(r”,  r‘; ~)Sf(n”)Sp*(a’) ( 2 3 )  
/ = 0  
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where the radial Green function is given by 

G J V ’ ( r ” ,  a ;  s ) G I V ’ ( a ,  r’;  s )  
GI( r”, r ’ ;  s )  = G;‘ ’( r”, r‘; s )  + 

h / a D - ‘ y -  G ~ ” ’ ( u ,  U ;  S )  

Therefore the energy levels s, are determined by the equation 

h -- - G ) ” ’ ( a ,  U ;  s n ) .  
a D - I y  

Of course, this is in general an  implicit (transcendental) equation. In  ‘real’ time (25) 
has the form 

h 
-- a D - l  -iG‘,”’(a, U ;  E,,). 

Y 
(26) 

The same result can be achieved by solving the radial Schrodinger equation for the 
perturbed problem 

Y ( r ) =  y a ( r - - u ) Y ( r ) .  
d2 D-1 d h‘l(l+ 0 - 2 )  

V ( r ) +  
2 mr2 

The corresponding radial wavefunctions are similar to ( 1 3 ,  given by 

3. Applications 

3.1. One-dimensional problems 

3.1.1. Free particle. This easy example of the free particle (FP) ,  where V ( x )  = 0, has 
first been discussed by Goovaerts er a1 [19] (however, with a different perturbation 
expansion) and  later on by Bauch [ 131 and Lawande and Bhagwat [ 141. An operator 
treatment is due  to Blinder [20]. We include it in the list of problems for completeness. 
We have the well known expressions 

We obtain immediately for the perturbed problem 

m y  exp[ -(G/ h ) (  Ix”- a1 + la - XI/ ) I  +- 
2h A (A - ( y /  h )Jm71)  

For y > 0 there is one bound state with wavefunction 

d m Y  m y  
h h2  

‘ ~ ( x )  =- exp(  -- / x  - a i )  
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and energy 

m yL E = - -  
2 h 2 .  

For s > 0 we have a continuous spectrum of scattering states. Due to the simple form 
of G(s), K ( r )  can be explicitly stated and is given by 

) m 
K ( x ” ,  x’; 7) = (A) exp (-- (x” - x’)2 

+,exp -- 

x erfc [ (2) ’ I 2 (  /xft - a 1 + lxf-  a 1 - - . 

2ThT 2 hr 

my 
2 h  ( ;: (ix” - a1 + Ixf- ai )  +y 

2 hr ”> h I 
2h 

Here the inverse Laplace transformation [21, p 2471 

~ - ’ [ p ” ’ ’ ( p ’ ’ ’ + p ) - ’  exp(-av$)](t) = e x p ( a p  +p t2 )  erfc -+p& (G 1 
has been used, erfc(x) = 1 - erf(x) and erf(x) is the standard error function erf(x) = 
(2/&) I,” exp(-t2) dt. Without loss of generality let us set a = 0. K ( r )  can be rewritten 
as [19] 

which gives odd scattering states which are not affected at all 

and even scattering states which are affected by the S potential 

3.1.2. Free particle on the half-line. The propagator for the half-line (Rf)  is well known 
and has the form [ 2 , 1 8 , 2 2 ]  

K‘WL)(X”, x‘; 7 )  

= K(FPyXrt, x’; r )  - K‘FPyX”, -x‘; r )  

I have chosen the boundary condition (see [22]) in such a way that the boundary at 
x = 0 is totally reflecting and therefore the wavefunctions vanish at x = 0. The Feynman 
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kernel can be constructed by the method of images, or by the fact that a radial path 
integral can be written as a superposition (provided that the potential satisfies V (  r )  = 
V ( - r ) )  of a sum of one-dimensional path integrals [18]. In this sense the half-line 
problem is a ‘one-dimensional’ radial problem with 1 = 0. For the Green function we 
obtain 

Therefore for the perturbed problem 
1 / 2  

~ ( x ” , x ’ ;  s ) =  (5) [exp(-lx”-x‘l~~ms/h)-exp(-/x”+x‘l~~ms/h)l 
my [exp(-lx”-a~JTms/h)-exp[-jx”+a~JTms/h)~ 
2h h {h - ( y/ h )&i‘72 [I - exp (-2aJTms/ h)]} 

+- 
x [exp(-Ja - x’lJTms/ h )  - exp(-/a + x’IJTms/ h ) ] .  (37) 

We obtain a transcendental equation for the energy level 
2 

E = -%[ 2h 1 - exp( -? JZmE)1 . 
This is the result of Van Siclen [23]. In particular, there is no effect for a = 0 because 
the wavefunctions must vanish for x = 0. For the limit a + cc 

E = - -  my2 
2 h 2  (39) 

so the farther away the 6 function the lesser the influence of the reflecting wall. A 
detailed numerical study of this transcendental equation can be found in [23], including 
a discussion of resonance states. Also it is found that in order that a bound state exists 
we must have a y >  h2/2m. 

3.1.3. Infinite square well. As the next example I consider the infinite square well ( ISW) .  

Lapidus E241 calls it a ‘one-dimensional hydrogen atom in an infinite square well’. Let 
us set 

for 1x1 < b 
for 1x1 2 b. 

V ( x )  = 

The Feynman kernel for the infinite square well is given by [2,25,26] 

K ( ’ S W ) ( X ’ ’ ,  x ’ ;  7) 

[exp(--(x”-x‘+2nb)’ m 
2 hT 

m 
-exp (-= ( x ” +  x’+ ( 2 n  + l ) b ) 2  

1 [ (x‘’-x’ ivhr) ( x ” + x ’  1 i d 7  
2b +- 2’2mb’ -)I - 0 3  - -- - 03-- 

2b 26 ’ 2mb2 

=- 2 “  e x p ( - h T y )  r 2 n 2  c o s ( ~ x 1 )  c o s ( ~ x t 1 ) .  
b n = ~  2mb 
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Here O3 denotes a Jacobi function [27, p 3711 

I obtain for the Green function 

”’ cosh[ & ( X” - X ’  - b ) /  h ] - cosh[& ( X” + x’) / h ] 
(43) sinh(& b/  h) 

G(ISW)(x”, x’; s) = 

where I have used the Laplace transformation [21, p 2241 

Therefore for the perturbed problem 

G(x”, x’; s)  = (E) ”*cosh[& (x”- XI- b) /  h ]  -cosh[= (x”+ x’)/ h]  
sinh(& b / h )  

- a - ‘) - cosh (& 
h 

X s i n h ( G  b/  h )  [cosh(= 

x { sinh (= $) -:(E) I i 2 [  cosh ( v!% $) -cosh( 
?)]}-I .  

In particular for a = 0: 

”2Cosh[& (x”- x’- b ) /  h ]  - c o s h [ G  (x”+ x’)/ h ]  
sinh(& b/ h ]  

+“‘{[cosh(&?) 2sh --cosh(d%:)] 

x [cosh (G?) -cosh( = :)I} 
x { 2 sinh( 

x [cosh( 8 $) -:& sinh( & $ ) ] } - I ,  

$) sinh( & $) 
(45) 

For a # 0 we have the transcendental equation for the energy levels E ,  

c o s [ ( 2 a / h ) ~ ] - c o s [ ( b / h ) ~ ]  
sin[ ( b /  h ) m ]  (46) Y 

For a = 0 this yields 

Ir (25) = tan [; (3) ”’1 
Y (47) 
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which is equivalent with ( E ,  = h’k:/2m): 

A numerical discussion of these features can be found in [24]. Note that for a = 0 only 
the even wavefunctions are perturbed; the odd wavefunctions remain unchanged. A 
similar effect appears if it happens that the S function is located at a node of a particular 
wavefunction; this wavefunction is unaffected by the perturbation. 

3.1.4. Harmonic oscillator. The perturbation of a harmonic oscillator (HO)  by a 6 
function has been discussed, e.g., by Janke and Cheng [28], but they have mainly 
concentrated on the statistical properties of the system. We consider 

(49) W ( X )  = (m/2)w’x2- y ~ ( x  - a ) .  

The Feynman kernel and the Green function (e.g. [29,30]) of the harmonic oscillator 
are given by (x”> x’): 

~ i H 0 l  (x”, x’; 7 )  

) ‘ “ e r p [  -E( ( x “ ~ + x ” )  c o t h . u r - 2 y  x’x’’ )]  (50a)  
mw 

= (27rh sinh wr  sinh wr  

G ( H o J ( ~ ” ,  x‘; s)  

Here D , ( z )  denote the parabolic cylinder functions defined by (e.g. [31, p 391) 

D, (z)  = 2 ”  ‘ exp(-z’/4) 
U 1 z2 

z u-4) lFl(  -. 1 - U  -. 3 - z2)] 
A 1-(-~/2) 2 ’ 2 ’ 2  * 

+- 

(G‘Ho’ can also be calculated by setting e‘ = [ I , , , ( x ) +  Z-l,2(x)], applying the 
integral (56) below and using relations between the Whittaker and  parabolic cylinder 
functions.) Therefore I obtain for the perturbed system (e.g. X ” S  a 2 x‘) 

2mw 

(51)  
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Of course, the energy levels E ,  are determined by the transcendental equation 

In particular, for a = 0: 

Here again only the even wavefunctions are affected; the odd ones remain unchanged. 

3.1.5. Harmonic oscillator on the hav-line. Let us consider the harmonic oscillator on 
the half-line (HO'): 

mw 'x2/ 2 f o r x > O  
for x 0. 

V(x) = ( 5 4 )  

The Feynman kernel can easily be constructed by the same methods of images as in 
subsection 3.1.2, yielding 

K(HO+)(Xf), x'; 7 )  

= K ( H o ) ( ~ r ) ,  x'; - K ' H o ' ( ~ " ,  -x'; r )  

To calculate the Green function we use the integral representation ( [ 3 1 ,  p86; 32, 
p 7291, a ,  > a,, R e ( i + p  - Y )  > 0 ) :  

loa coth2Y ( 5 )  exp (-? t cosh x Zz+( t G  sinh x )  d x  

Here Wu,+ and M , ,  denote Whittaker functions which are defined by [32 ,  p. 10551 

and the M , , ( z )  are given by M , , ( z )  = z + + , ' ~  e-"21Fl(p - v + + ;  2 p  + 1 ;  z ) .  We obtain 
(x"  2 x')  

G ' H o t ) ( ~ ' ' ,  x'; s )  
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where [31, pp 40,411 

E?'(Z) = 22 exp(-z2/4) 1 ~ ,  

= 2 f i  (g) 
and D,( z) = 2""( z2/2)-li4 Wp,~+l,4.*l/4(z2/2). Therefore I get for the perturbed problem 
(e.g. x"z= a 2 x') 

G(xt t ,x ' ;  s i =  [ 2 1 1 4 + ~ 1 2 ~ ~ ( ~ ) ' f 2 r ( ~ + ~ ) D - i , 2 - s , h u (  Tho 4 2hw (y)"2xft) 

x E?,),2-s,hu( (T)''~X')] 2mu 

21'4*s'2hur(2+L) 4 2hw D-, ,2-r ihw( (?)I" a) 

x E Y : ~ ~ - ~ , ~ ~ (  ( 7 ) 1 ' 2 a ) ] - ' ,  2mw 

The energy levels E, are defined by the equation 
1 ='(L) 1'2 21/4-~,]/2hw 

h 2Thw 
2mw 

x E ~ I ' I z + E , , / ~ ~  ((7) 1'2a). (59 )  

For a = 0 there is no effect at all because EL"(0) = 0; the wavefunctions vanish for x = 0. 

3.1.6. Morse potential and Liouville quantum mechanics. As the next example we con- 
sider the Morse potential ( M )  

V i h 2  
(60) v ' ~ ' ( x )  = - (e" - 2a e") 

2m 
( V, > 0 and a E 62 are constants). This potential has N,,, < a V, --+ bound states. The 
Green function can be calculated by the path integral formalism explicitly [33-361 and 
is (x"3x ' )  
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The energy levels E, are determined by 

Liouville quantum mechanics [37-391 can be studied by setting a = 0 in V ' M ' .  With 
the help of W o , , ( z ) = m  K,(z/2) and Mo, , (z)=22+I-( l+p)& I,(z/2) [32, 
p 10621 we obtain (e.g. X " Z  a z x ' )  

Again, the energy level is determined by ( y > 0) 

h2  
2mY 
-- - I ~ ~ ~ , f i ( V O e " ) K , ~ , f i ( V O e " ) .  

For y < 0 there exists no bound state. We can study the limiting case V, e" << 1, then 
with [40, p 1191 IY(z)--(z/2)"/I-(1+ v )  and K , ( ~ ) - - ~ ( Z / ~ ) - " I ' ( V ) ( Z + O ) :  

and we recover in this limit the free particle case 

E = -my2/2h2. 

( In  the next order of approximation E can be determined by the cubic equation (z  + 0) 
v 3 -  vZ(my/h2)-  v+(my/h2) (1+z2 /2 )=0 ,  where v = v " E / h . )  Since I o ( z ) K o ( z ) ~  
(0, CO) (z > 0) there is always a solution a, = a(  y, Vo) implicitly defined by ( y  > 0) 

h2  
- = Io( Vo e")Ko( Vo e") 
my 

such that for all a <a,  there exists a bound state. The increasing potential well for 
a +CO of Liouville quantum mechanics neutralizes the effect of the binding strength 
of the 6 function and no bound state can exist for a > a,. 

3.1.7. Rejlectionless potential. The scattering properties of the potential 

h 2 N ( N + l )  N E N  V ( x )  = - 
2m cosh' x 

have been studied by Crandell[41] and Crandell and Litt [42]. They called it 'reflection- 
less' because for an incoming continuous state eipx ( p  = momentum) there is no 
reflected contribution Ke-ipx.  This feature depends critically on the fact that N is a 
natural number. The path integral solution of this kind of potential can be obtained 
by the path integral for the modified Poschl-Teller potential [7] and the bound and 
continuous states of the reflectionless (RL) potential can be written as (e.g. [7,  43, 441) 

h 2  
E, = - - ( N - n )' 

2m 
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for bound states, and 

h2p2 
Ep =- PER 2 m  

for continuous states. Here P t ( x )  denote Legendre functions which are defined by 
(1x1 s 1, [32 ,  p 9991): 

PP(x)=- r(i-y) (1+x)y -22F , ( -v ,v+ l ; l -y : -  - 1 - x  1-x). 2 

Because N E N, the bound and continuous states are in fact polynomials in tanh x and 
e-”/cosh x, respectively. For N = 1 we obtain 

h’ 
2 m  

E 1 
& cosh x V t J ( X )  = 0- 

eipx ip - tanh x 
6 1+ip  ’ 

9 y ( x )  =- 

N = 2 yields 

d3 ‘ui2’(x) = 
2 cosh2 x 

2h2 
m 

E 
0- 

h2  
2 m  

E 
1 -  2 cosh’ x 

3 e-x 1 9 F J ( x )  = - 1------ 
1 - ip cosh x 2 ( 2  - ip) cosh’ x 

Let us first discuss the N = 1 case because it is the simplest one. The Feynman kernel 
can be cast into closed form [41,42] and is 

K‘RL’(X”, X’; 7) 

m 

=*bl)(x’)“bl)(X’’) exp(-Eo.r/h)+ dp 9 ~ ) * ( x ’ ) 9 ~ ’ ( x ’ ’ )  exp(-Ep7/h) I, 

Here use has been made of the integral representations [32, p 4971 (Re p, y > 0, a > 0 ) :  

exp( - p x 2 )  sin ax 

7T 
2 sinh ay+e-ay erf 

4 
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exp(-px2) cos ax 

x 2 cosh ay-e-aY erf 
4Y 

For the Green function we obtain 

GIRL’( x”, x’; s )  

= ( E ) ‘ I ’ e x p ( - T  Ixl’-x‘/ G) + h 1 
2 cosh X I  cosh XI’ s - h2/2m 

x { 1-  ( 1-- A) cosh [ I X ’ ’ - X ‘ ~  (1 +?)]I. 
As usual, this yields for the perturbed problem 

y G ( R L ’ ( ~ ’ ’ ,  a ;  s)G‘RL’(a, x’; s )  
G(x”, x’; S )  = G ( R L ’ ( ~ ’ ,  x‘; S )  +- 

h I - ( ~ / h ) G ‘ ~ ~ ’ ( a ,  a;  S )  

and the energy levels E, are determined by the equation 

Here use has 

h 2  l i 2  h -=(-%) Y -2cosh’ a-(E,+h2/2m) 

been made of the Laplace transformations (21, pp  176, 1771: 

exp[(a - p ) t ]  e r f ( 6 )  d t  = (;) l?L& 

Denoting x = e, this can be rewritten as a cubic equation in x: 

An investigation of this equation shows that we have in general three bound states. 
For a = 0, (75) reduces to 

which gives the two energy levels 
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In the limit a --*CO (complete decoupling) we obtain 
2 

i2 E --my E ,  = -- 
2h' 2 -  2 m  (77) 

because the solutions of ( 7 5 )  are analytically known it is possible to state the Feynman 
kernel corresponding to G (  s )  explicitly. However, this is rather tedious and lengthy 
and is postponed until the appendix. The (in general) three bound states can be easily 
stated by taking the residuum of (73) at s = s,, which yields the wavefunctions 

2s,(s, - h 2 / 2 m ) ( 6 - & ) G i R L ' ( x ,  a ;  s,) 
(78) Y v'(J)(x) = - 

h h & 6 - d & ) - 6 & . J & - & ) - & ( v 5 - & )  

corresponding to the energies E = E, = -s, < 0 ( i  = 1, 2 ,  3). 

can be cast into a finite sum yielding 
Let us sketch the case for general N E  N. According to [41] the Feynman kernel 

K ( R L ) ( X " ,  x ' ;  7) 

The Green function is evaluated as 

G'RL'(~' ' ,  x ' ;  s) 

The Green function of the perturbed problem is given by (73) with GiRL' of (80) 
instead of ( 7 2 )  and the energy levels E, are determined by 

which is equivalent to finding the zeros of a polynomial of degree ( 2 N +  1) in a, 
therefore in general giving rise to ( 2 N +  1) energy levels. 

3.1.8. Reflectionless potential on the half-line. For completeness let us study V'RL'  on 
the half-line, i.e. 

I.fl for x c 0. 
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I state only the results for N = 1. By the method of images we construct the Feynman 
kernel, yielding 

K(RL+)(X”, x’; 7) 

m 
2 h7 

and the Green function: 

G‘RL”(~’’, x’; s) 

s i n h ( $ G )  sinh (:d%). (84) 
h ( l - h / d % )  1 + 
cosh x’ cosh x” s - h 2 / 2 m  

The Green function of the perturbed problem is given by 

( 8 5 )  
G‘RL’) (XI’, a ;  s ) G ( ~ ~ + ) ( ~ ,  x’; S)  

G(x”, x’; S) = G ( R L + ) ( ~ f ’ ,  x‘; s)+- 
h l - (y /h)G‘RL+)(a,  a ;  S) 

and the energy levels E,, are determined by the equation 
1 i 2  ;=(-e) h [l-exp(-?j-2mE.)1 

sin h2 (: -) . h(  1 - h / - )  + 
cosh‘ a(E, ,  + h 2 / 2 m )  

Of course, for a = 0, we have no effect at all. 

3.1.9. Inverse distance potential. We consider the one-dimensional potential 

V y x )  = -q2/Ix/ X f O .  (87)  
This ‘Coulomb’-like potential separates, due to its strong singularity, the domains x < 0 
and x > 0. Therefore it it is sufficient to consider only V‘q’ for x > 0. Its Green function 
can be explicitly calculated and is ( x ” 2  x‘) 
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This result can be achieved by operator calculus [45] and path integration [46]. We 
obtain for the perturbed problem (e.g. x " 2  a 3 x ' )  

G ( x  ' I ,  x';  s ) = [ & r ( 1 - f &) 

The energy levels E,, are determined by the transcendental equation 

With the asymptotic expansions for Wu., ( 2 )  = z" e-zi2 and M , ,  ( z )  = 
z-"  ez''[r(l+ p - v ) T (  1 'C2p)l-I for z + CO [31, pp 90, 911 the problem decouples and 
we obtain two spectra containing the energy levels 

(91) 

In the limit a+O we find, with [31, p28] Mv, , (z )=z /T(1+2p)  and M , , ( z ) -  
i/r(i - v) ( Z - o ) ,  

'amy 
a+O Y 

h h 
1 -- G"'(u, U ;  s)= 1 -T= 1 

and the S function has no effect, due to the vanishing of the wavefunctions at the origin. 

3.1.10. Poschl- Teller potential. The Poschl-Teller potential is defined by 

o < x < - .  7T 

2 

The path integral of this potential can be calculated with the help of the path integral 
on the SU(2) manifold [6,7] and the Green function is given by 

with the wavefunctions 
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where Pipsp) (  x) denote Jacobi polynomials. Consequently we obtain for the perturbed 
problem 

y G'PT'(~ ' ' ,  a ;  s)GiPT'(a, x'; s )  
G(x", x'; S )  = G ' P T ' ( ~ " ,  x'; S )  +- (95) h 1 - ( y / f ~ ) G " ~ ' ( a ,  a ;  S) 

and the energy levels E ,  are determined by the equation 

In contrast to the Green functions of the previous problems, this one cannot be stated 
in a closed form, but only as an infinite sum. 

3.1.1 1. Modijied Poschl- Teller potential. The modified Poschl-Teller potential is 
defined by 

) r>0.  V " P y r ) = -  q ( 7 - 1 )  v ( v - 1 )  
sinh'r cosh'r (97) 

This potential is a generalization of the reflectionless potential as discussed in subsection 
3.1.7 and is, o f  course, far more complicated. Its path integral can be evaluated by 
means of the S U ( 1 , l )  path integral [7]  and the Green function is given by a sum of 
discrete and continuous states. We adopt the notation as in [43].  Let us define 
2s = ~ ( 7  - l ) ,  -2c = v( v - 1) and introduce the numbers k , ,  k ,  which are defined in 
terms of s and c by k ,  = f ( l * G ) ,  kZ = i ( l * m ) .  The correct signs depend on 
the boundary conditions for r + O  and r+m, respectively. In particular one gets for 
s = O  an even and an odd wavefunction corresponding to k2=a ,  i. We obtain 

where the wavefunctions are given by 

x I-( k ,  + k2+ K - l ) T ( - k ,  + kz- K + 1 ) ] 1 ' 2 .  

Here ~ = f ( l + i p )  and n = 0 ,  1 ,  2 , . . . ,  N,v, k , - k 2 - f ,  

y G(mPTI(r", a ;  S)G'"'~~'(U, r';  s)  
G( r", r ' ;  s) = G(mPT) ( r " ,  r ' ;  s )  + - 

h 1 - (~/h)G'""(a ,  a ;  S) 
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and the energy levels E,, are determined by the expression 

1 NM 19 I”’( a ) 1’ Y I*;””(a)l2 
(102) 

y v = ~  s - (h2/2m)[(2k, - k2- v )  - 11’- E,,+[o dp ( h2p2/2m) - E, 

again a quite complicated expression, where only very special values of the parameters 
allow significant simplification. 

-= 

3.1.12. Free particle with 6 function. As a final example for the one-dimensional case, 
where the Green function is known in closed form, we can study the effect of two 6 
functions, i.e. 

W ( x )  = - y6(x - a )  - jS(x - a‘) (103) 

and  interpret the second 6 function as a perturbation of the first (see also Zhdanov 
and  Chikhachev [12] where such a system is understood as a particle in the field of 
two 6 potentials which are flying apart). From subsection 3.1.1. we have the Feynman 
kernel and  the Green function: 

K@)(x’’, x‘; T )  

G“)(x”, x‘; s )  
l i 2  

my exp[ -(G/ h )(/x” - a /  + ( a  - x’l)] 

Thus we obtain the Green function for the double 6-function problem: 

+- 
2 h  v5 (A - ( y / h )%Gip ) 

G(6i(x”, a‘; s)G“’(a’, x’; s )  
G(x”, x‘; S )  = G ( 6 ’ ( ~ ’ ’ ,  x’; s)+-  h 

1 -(+/h)G(6i(a‘, 6 ;  S )  ’ 
(104) 

The energy levels E, are determined by the equation 

h ’ I 2  my e x p [ - ( 2 1 a ‘ - a l / h ) ~ ]  

For either la1 +CO or 151 +CO,  respectively, the problem clearly decouples into two 
independent systems with energy levels 

- mT2 my’ 
2 h 2  2 h 2 ’  

m(Y + TI2  
2h’ . 

E=---- E=---- 

For a’ = a we obtain, of course, the expected result 

E = -  
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The whole procedure can be repeated for an arbitrary number of S functions (including 
all the potential problems 3.1.2-3.1.9) but, of course, with increasing complexity. Let 
us state a recursion formula for this kind of problem. Let us consider 

N 

W(x) = V(x) - 1 y18(x - UJ). 
] = I  

We set G“’(s) = G‘”’(s) and obtain for j = 1 ,  . . . , N :  

3.2. D-dimensional radial problems 

3.2.1. Free particle. We first consider the simplest case V( r )  = 0, i.e. the free particle 
(FP). The Feynman kernel is given by 

KIF”(r’’, r’; r )  

The Green function is, with the help of the integral representation [32, p 7191, 

GjFp)(r”, r’; s )  =- 2m ( r  I r o ) ( 2 - D j j 2  I/+( D-2112 ( f \i2ms) K/+c D - 2  j j 2  (g G). ( 109) h 

This gives for the perturbed problem (e.g. r ” 2  a 5 r ’ )  

2m , ,I i 2 - D ) / 2  G l ( r ” ,  r ‘ ;  s )  =- ( r  r ) 
h 

The energy levels E,, are determined by 

From the behaviour of I , ( z )  and K , ( z )  for v+co, [40, p 1221: 

where ~ = ( l + z 2 ) + l n [ z / ( l + ~ j ] ,  we have for large 1 

2may 

and only a finite number of values of 1 can contribute to bound states. 
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3.2.2. Two-dimensional particle confined in a sector. We can study a two-dimensional 
example by studying the potential 

if O <  qh < a 
elsewhere. 

Here, of course, two-dimensional polar coordinates x = r cos qh, J = r sin 4, ( r  > 0,  
4 E [ 0 , 2 n ] )  are used. The Feynman kernel has been first calculated by Crandel [ 4 7 ]  
and later on by path integration by Chetouani et a1 [48]. It has the form 

K""(r" ,  qh", r ' ,  4'; T )  = K j " ' ( r " ,  r ' ;  r )  ( 1 1 3 )  

where the radial kernel is given by 

2 m  m 
K i U ' ( r " ,  r ' ;  r)=-exp( -- 

h rcx 2 hr 

The special example of cx =2n-  has also been considered by Schulman [ 4 9 ] .  For the 
Green function we obtain ( r " 3  r ' )  

G ) " ' ( r " ,  r ' ;  r )  =% ha I,, ($=) K,,,, (f \2ms) 

which yields, in the usual way, for the perturbed problem 

y G l a ' ( r " ,  a ;  s ) G ) " ' ( a ,  r ';  s )  
h l - ( Y / h ) G j " ' ( a , a ; s )  ' 

GI( r", r ';  s )  = G)" '( r", r ';  s )  +- ( 1 1 6 )  

The energy levels E,, are determined by the equation 

From the behaviour of the modified Bessel functions I,, and K ,  for v+oc (see the 
previous section), we see that ( 1  1 7 )  yields approximately 

2 m a ' a ' l ~ , /  " 1 - ( l +  2mY 
h21n 12T2h' 

so that only a finite number of levels can exist and that roughly 2 m y /  h 2 n  > 1 is required 
in order that even one single level can exist. 

3.2.3. Radial harmonic oscillator. Next we consider the radial harmonic oscillator ( R H O )  

in D dimensions which is given by 

m 
2 

V (  r )  = - w 2 r Z  

The Feynman kernel and  the Green function are given by [ 3 ,  501 ( r " >  r ' ,  cf ( 5 6 ) ) :  

K j R H o ' ( r r ' ,  r ' ;  r )  

m w  mw ( ,.I,.,I) i 2 -  D )I 2 

( r" + r"2) coth wr  - - 
h sinh wr 
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G)RHo’( r“ ,  r ‘ ;  s) 

5227 

Therefore we obtain for the perturbed problem (e.g. r ” 3  a 3 r ’ )  
I-[:( 1 + 0 1 2  + h w ) ]  G I ( r ” ,  r ‘ ;  s) = r( I + D / 2 ) w  (r’r‘’) D ’ 2  

r [ ; ( i + ~ / 2 + ~ / h ~ ) ]  x l - -  [ ahw w- c / 2 nu,< I , * 1 ( I + i D -2 I / 2 I-( l -t D / 2 )  

The energy eigenvalues E, are given by 

3.2.4. Inverse distance (Coulomb) potential. The inverse distance potential in D 
dimensions is described by 

which, for D = 3 is just the Coulomb potential. For general 1 E R  this potential is also 
known as the Kratzer potential. The radial Green function for this problem can be 
evaluated by path integrals in closed form and is [8, 46,  51-53] ( r ” >  r’): 

V ( r )  = - q 2 / r  ( 1 2 3 )  

For the perturbed problem we therefore obtain (e.g. r 2 a 2 r ’ )  
r ( l + ( D - 1 ) / 2 - ( q 2 / h ) m )  

GI( r”, r’; s )  = 
( 2 l +  D -  l ) ! ( r ’ r ” ) ( D - ’ ’ ” *  

r(i+ ( D  - 1 ) / 2  - (4*/h)-) 
( 2 l + D -  l ) !  
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The energy levels E,  are determined by 

h 
Y (21+D- l ) !  

1/2r(i + ( D  - 1)/2 - ( q 2 /  h)-) 

Of course, the method of subsection 3.1.12 of constructing the Green function for a 
one-dimensional potential problem with an arbitrary number of 6 functions can also 
be applied for the D-dimensional problems, corresponding to a shelf structure of 6 
perturbations. For example, let 

W( r )  = V( r )  - y6( r - a )  - +6( r - a") (127) 

then we obtain 

T G!'-"(r'', a ;  s)G"-')(a, r';  s)  
GI(r", r';  s) = Gj'-"(r'', r'; s)+- 

h 1 - ( T / ~ ) U ~ - ' G ( ' - ~ '  I ( a , a ; s )  ' 

4. Summary 

In this paper I have discussed several examples (one- and D-dimensional) of exact 
summation of a perturbation series for potential problems with a &function perturba- 
tion. The expansion in a perturbation series uses the path integration technique. The 
main result is a (in general transcendental) equation for the perturbed energy levels 
E,, which in the one-dimensional case has the form 

If=iG")(a, a ;  E, )  
Y 

and in the D-dimensional radial case has the form 

-- - iGj''(a, a ;  E,,)  
a D - ' y  

h 

where G") and GjV'(E)  denote the Green functions of the unperturbed one- and 
D-dimensional problems, respectively, which are known, of course, by path integration. 
These two simple equations determine the energy levels in a unique way. However, 
the Green functions are not explicit in the sense that wavefunctions and energy levels 
can be expressed explicitly in terms of known functions (of, e.g., the level parameter 
n). But this is not surprising. M'ore important is the fact that it is nevertheless possible 
to state in closed form a Green function whose poles give information about the 
spectrum. 

Of course, every usual solvable quantum mechanical problem where the Feynman 
kernel or the Green function is known (at least even semiclassically) can be perturbed 
by 6 functions and discussed by our technique. The selection presented in this paper 
was motivated by the fact that in the examples the Green function G ( E )  is known in 
closed form or as a spectral expansion into discrete and continuous states, respectively. 
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In particular for the (modified) Poschl-Teller potential there is a great variety of 
problems which can be treated by the technique of spacetime transformations [4, 8, 
54-56], e.g. the potential V(x) = V,/(l +e-") [57,58], the Rosen-Morse potential 
V ' R M ' ( ~ )  = A tanh x - B/cosh2 x [58-611, the Manning-Rosen potential V ' M R ' ( r )  = 
- A  coth r +  B/sinh2 r [58], the HulthCn potential V'"'(r) = - V, e-r''/(l - e - r ' a )  [62] 
or the Kepler problems in a space of constant negative or positive curvature [59,63]. 
In all these cases the solution of subsection 3.1 can be applied; however, the various 
energy spectra must be taken into account. In this sense the examples here can be seen 
as basic examples; all others can be derived from them. 

The case of a point 6-function perturbation in D-dimensional space, i.e. set a = 0 
in sections 2.2 and 3.2, must be treated with a modified S perturbation [9, IO]. In this 
sense the result of [64] cannot be seen as correct; in the formalism the entire Green 
function must be taken, not only (the discrete) part of it. But this will be discussed 
elsewhere. 
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Appendix. Propagator for the 6 function perturbed reflectionless potential 

In order to calculate the Feynman kernel K ( r )  of the perturbed problem we split up 
the Green function according to 

G(x", x'; s )  = G'(x", x'; s)+ G"(x", x'; s )  (A.1) 

where G'(s) denotes the free-particle part. Clearly 

Let us denote the (analytically known) solutions of (75 )  by xi =fi, x,=& and 
x3 = 6. This gives for the second part of the perturbed Green function 

y G ( R L ) ( ~ " ,  a ;  s)G'RL'(a, x'; s )  
h 1 -(y/h)G'RL'(a ,  a ;  s )  

G"(x", x'; S )  = - 

A (s - fi2/2m) 
A (A - t/;T )(A - 6)  (& - 6)  G ' R L ) ( ~ " ,  a ;  s ) G ' R L ' ( a ,  x'; 5 )  
Y - _  - 

G"'(x", x'; s) 6-6 
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where the Green functions G‘”(s) are given by ( i  = 1 ,2 ,3 )  

G‘RL)(~’‘ ,  a ;  s)GiRL’(a, x‘; S )  
h Gi”(x”,  x’; s) =- 

with ( i  = 1 ,2 ,3 )  

G i l , ” (x” ,  x’; s )  

f i  e x p ( - G  1x1’- ai/  f i )  
2 cosh a cosh x’ &-& 

x { 1-  ( 1-- A) cosh [ Id- aj (1 +?)I} 
h 

2 cosh a cosh x” 
e x p ( - G  I x ‘  - ai/  f i )  

A-& + (;) ’ I 2  

x { 1-  ( 1-- & ) c o s h [ ~ x ” - a ~ ( l + ~ ) ] }  

Gi3.”(x”, x’; s )  

- fi’ h 1 - 
4 cosh’ a cosh x’ cosh x” h-& s - ( f i 2 / 2 m )  

x { 1 -( 1 -&) cosh [ !df- a l ( 1  +F)]}. 
Therefore 

i 

K ” ( X ” ,  X’; 7) = 1 K””’(X”, X’; 7). 
k.2 = 1 

We make use of the inverse Laplace transformations [21, pp 246,2471: 
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For K‘”‘ ’ (  r )  we obtain 

K(l.”(x”,  x’; r )  

- - { ( ” ) “ * [ e r p ( - z ( x f ~ - a ) ’  m 
2 cosh a cosh x’ 2 r h r  

m 
( 1 ~ “ -  a1 + jx’ - ai)’ 

(1~’ ‘ -  a1 - / X I  - ai)’ 
m 

+ (2) exp (, 
x erfc [ (5) ‘(/XI! - ai - r (?) 

- a 1 - 
h h  

2 h7 ’)I 

In order to calculate K ‘ 3 ” ’ ( r )  we split G ’ 3 , ’ ) ( s )  into three contributions according to 

G‘3” ’ (~” ,  x’; s )  

( A . l l )  



(A.12) 
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Thus 
3 

~ ( 3 . ‘ ) ( ~ ! ! ,  x r ;  r )  = 1 K ( 3 . Z . J )  (x“, x’; 7 ) .  
] = I  

This yields for each j ,  where p, = s,, * h 2 / 2 m  ( j  = 1, 2,3)  
K ( ~ . I s J ) ( ~ ~ ) ,  x’; T )  

1 
4 cosh’ a cosh x’ cosh XI’ 

- - 

m 
m 2 hr 

m 
2 hr 

+ 

m 
2 AT 

2 hr 

2 hT 

x erfc [ (g) ”* ( - ~xr - a I - r (%) ”*)I} 
1x”- a /  + la - X’I 

47 m 

(1~’ ’ -  a /  + ( a  - x’l) 

1x”- a1 - l a  - X’I 

47 m 
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1x"- a1 + la - X'I 

4T m 

(A.13) 
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